
Ricerca

Credits A. Montenegro



Ricerca
• Scorrimento iterativo dell’array – Caso in cui non so nientedell’array

1 3 5 7 9N = 7 ?



Ricerca

1 3 5 7 9N = 7 ?



Ricerca

29

1 3 5 7 9N = 7 ?

Scorrimento iterativo dell’array



Ricerca

30

1 3 5 7 9N = 7 ?

Scorrimento iterativo dell’array



Ricerca

31

1 3 5 7 9N = 7 ?

Scorrimento iterativo dell’array



Ricerca

32

1 3 5 7 9N = 7 ?

• Caso peggiore: scorriamotutto l’array (comequando non è presentel’argomento, complessitàlineare legata al numerodegli elementi)• Funziona anche se l’arraynon è ordinato

Scorrimento iterativo dell’array



Ricerca – E se l’array fosse ordinato?
• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

33

1 3 5 7 9N = 7 ?



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

34

1 3 5 7 9N = 7 ?
0 4 Controllo l’indice nelpunto medio

𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑
2

m = 2
Start = 0 End = 4

Ricerca – E se l’array fosse ordinato?



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

35

1 3 5 7 9N = 7 ?
0 4 Controllo l’indice nelpunto medio

𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑
2

m = 2
Start = 0 End = 4

Ricerca – E se l’array fosse ordinato?

Complessità logaritmica,perché vado a dividere l’arrayin parti



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

36

1 3 5 7 9N = 7 ?Start = 0End = 4m = 2

0 42

Ricerca – E se l’array fosse ordinato?

Controllo l’indice nelpunto medio
𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

38

1 3 5 7 9N = 7 ?Start = 0End = 4m = 2

0 42

L’elemento in posizione m non è quello che cerchiamoL’elemento in posizione m è più piccolo di N e l’array è ordinato

Ricerca – E se l’array fosse ordinato?

Controllo l’indice nelpunto medio
𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

39

1 3 5 7 9N = 7 ?Start = 0End = 4m = 2

0 42

Cerchiamo nella metà di destra dove ci sono gli elementi più grandi di quello in posizionem (quindi forse c’è N)Start = m+1, End = End (nel caso opposto Start = Start e End = m-1)

Ricerca – E se l’array fosse ordinato?

Controllo l’indice nelpunto medio
𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

40

1 3 5 7 9N = 7 ?Start = 3End = 4m = 3

0 42 3

Ricerca – E se l’array fosse ordinato?

Controllo l’indice nelpunto medio
𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2



• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

41

1 3 5 7 9N = 7 ?Start = 3End = 4m = 3

0 42 3

Possibilità: troviamo N oppure Start > End (non troviamo N)

Ricerca – E se l’array fosse ordinato?

Controllo l’indice nelpunto medio
𝑚 = 𝑠𝑡𝑎𝑟𝑡 + 𝑒𝑛𝑑

2



Ordinamento

Credits A. Montenegro



Ordinamento
Vedremo due algoritmi iterativi, ed uno ricorsivo.



Selection Sort
• Ordinamento Iterativo 1

3 1 9 7 5



Selection Sort
• Ordinamento Iterativo 1

Logica• Fisso un elemento in posizione i fino a LEN• Scorro l’array in avanti a partire da quello in posizione j = i + 1 fino a LEN - 1• Se V[i] > V[j] li scambio• Alla fine del secondo ciclo fino a i siamo sicuri che l’i-esimo elemento più piccolo èin posizione i

3 1 9 7 5v=



Selection Sort
• Ordinamento Iterativo 1

3 1 9 7 5
i = 0 , j = 1



Selection Sort
• Ordinamento Iterativo 1

1 3 9 7 5Scambio



Selection Sort
• Ordinamento Iterativo 1

1 3 9 7 5
i = 0 , j = 1



Selection Sort
• Ordinamento Iterativo 1

1 3 9 7 5
i = 0 , j = 1



Selection Sort
• Ordinamento Iterativo 1

1 3 9 7 5
i = 0 , j = 1



Selection Sort
• Ordinamento Iterativo 1

• Ho finito il loop interno, so che l’elemento più piccolo è inprima posizione. Ora rientro nel loop più esterno edincremento i

1 3 9 7 5
i = 0 , j = 1



Selection Sort
• Ordinamento Iterativo 1

1 3 9 7 5i = 1 , j = 2

1 3 9 7 5

1 3 9 7 5



Selection Sort
• Ordinamento Iterativo 1 1 3 9 7 5
i = 2, j = 3

1 3 7 9 5

1 3 7 9 5

Scambio

1 3 5 9 7 Scambio



Selection Sort
• Ordinamento Iterativo 1

Il terzo elemento più
piccolo è in terza
posizione

1 3 9 7 5
i = 2, j = 3

1 3 7 9 5

1 3 7 9 5

Scambio

1 3 5 9 7 Scambio



Selection Sort
• Ordinamento Iterativo 1
i = 3, j = 4

1 3 5 7 9 Scambio

1 3 5 9 7

Fine!



Bubble Sort
• Ordinamento Iterativo 2

3 1 9 7 5



Bubble Sort
• Ordinamento Iterativo 2

Logica• Fisso un elemento in posizione i (scorro fino a LEN - 1)• Scorro l’array in avanti a partire da quello in posizione j = 0 e fino alla posizioneLEN - i - 1• Se V[j] > V[j+1] li scambio (si usa una finestra di 2 elementi)• Alla fine del secondo ciclo siamo sicuri che gli elementi da i in poi sono ordinati• Ottimizzazione: se in una passata non ho cambiato nulla posso fermarmi

V = 3 1 9 7 5



Bubble Sort
• Ordinamento Iterativo 2

3 1 9 7 5
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 9 7 5Scambio
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 9 7 5
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 9 7 5
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 7 9 5Scambio
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 7 9 5
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 7 5 9Scambio
i = 0 -> LEN - 1, j = 0 -> LEN - 1



Bubble Sort
• Ordinamento Iterativo 2

1 3 7 5 9

i = 1 -> LEN - 1, j = 0 -> LEN - 2

1 3 7 5 9

1 3 7 5 9

1 3 5 7 9Scambio



Bubble Sort
• Ordinamento Iterativo 2 i = 1 -> LEN - 1, j = 0 -> LEN - 3

1 3 5 7 9

1 3 5 7 9

Fine!Nell’ultima passata dell’array non ho effettuato scambi.



Selection Sort vs Bubble Sort
• Entrambi non sono algoritmi ottimi (hanno la stessacomplessità nel caso peggiore)
• Bubble Sort fa più scambi di Selection Sort
• Se i dati da scambiare sono pesanti, è preferibile SelectionSort
• Bubble Sort può essere ottimizzato fermandosi se non sonoavvenuti scambi

Ordinamento Iterativo



Merge Sort

Logica• Si divide l’array in due• Si copia in un nuovo array in modo ordinato, rendendo gli elementi da entrambele metà dell’array

Ordinamento Ricorsivo



Merge Sort
Ordinamento Ricorsivo



Merge Sort
Ordinamento Ricorsivo



Merge Sort
Ordinamento Ricorsivo



Merge Sort
Ordinamento Ricorsivo



Merge Sort

[…]

Ordinamento Ricorsivo



Merge Sort
Divisione a metà

Caso base: porzioni didimensione 1 Merge di tutte le porzioni

Array ordinato!

Ordinamento Ricorsivo



Thank You!

Mail: luca1.alessandrini@polimi.it
Website: https://alessandriniluca.github.io/

mailto:luca1.alessandrini@polimi.it
https://alessandriniluca.github.io/

