Esercitazione 10

2025/11/19 – Ricorsione (e Ordinamento)

L. Alessandrini

Credits: A. Montenegro per gli esercizi

Ricorsione

Esercizi

[RICORSIONE]: Stampa Numeri

Testo - pt. 1

Si scriva una funzione ricorsiva che prende in input un intero positivo n e che stampi tutti i numeri interi da 1 a n

Esempio – pt.1: $n = 10 \rightarrow 12345678910$

Testo – pt. 2:

Si scriva una funzione ricorsiva che prende in input un intero positivo n e che stampi tutti i numeri interi da n a 1

Esempio – pt. 2: $n = 10 \rightarrow 10987654321$

[RICORSIONE]: Potenze

Testo

Si scriva una funzione ricorsiva "potenza" che prende in input un numero base e un numero esponente e restituisce la base elevata all'esponente

Esempio: base = 2, esponente = $6 \rightarrow 64$

[RICORSIONE]: Conversione Binario

Testo

Si scriva un funzione ricorsiva per la conversione di un numero n in binario. La funzione deve restituire un intero che sembra la rappresentazione in binario del numero.

Esempio: 6 -> 110

[RICORSIONE]: Triangolo di Tartaglia

Testo

Scrivere una funzione che stampi il triangolo di tartaglia dato un intero N

Si utilizzi una funzione ricorsiva per il calcolo dei coefficienti del triangolo

Nota: il coefficiente del triangolo in posizione n (riga) k (colonna), è il coefficiente binomiale

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Con

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$N = 3$$

$$N=0 | 1$$

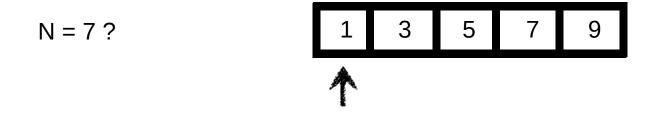
$$N=1 | 1 1$$

$$N=3 \mid 1 \mid 3 \mid 3 \mid 1$$

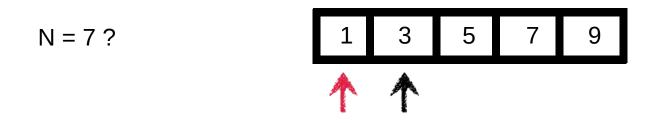
[RICORSIONE]: Inversione Stringa

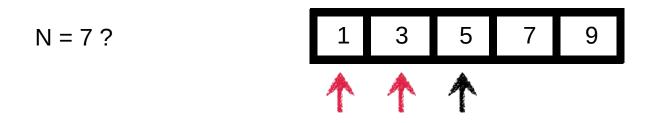
Testo

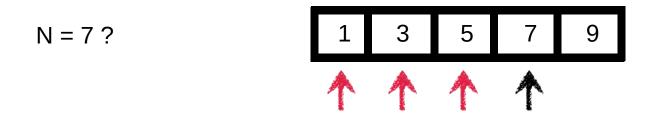
Si scriva una funzione ricorsiva in grado di invertire una stringa data in ingresso.


Esempio: "ciao mamma!" -> "!ammam oaic"

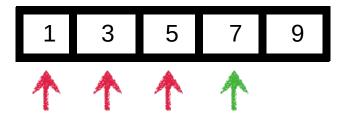
Credits A. Montenegro


 Scorrimento iterativo dell'array – Caso in cui non so niente dell'array




Scorrimento iterativo dell'array

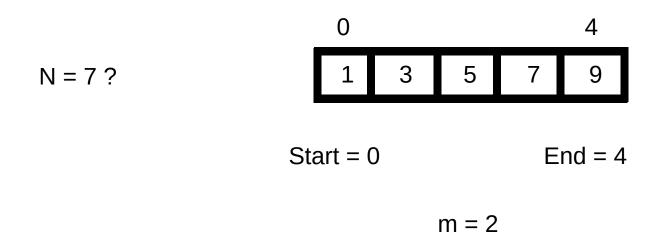
Scorrimento iterativo dell'array



Scorrimento iterativo dell'array

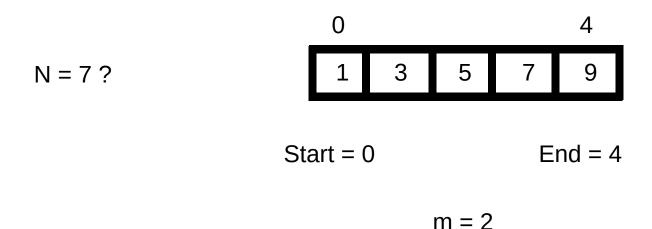
Scorrimento iterativo dell'array

N = 7?


- Caso peggiore: scorriamo tutto l'array (come quando non è presente l'argomento, complessità lineare legata al numero degli elementi)
- Funziona anche se l'array
 non è ordinato

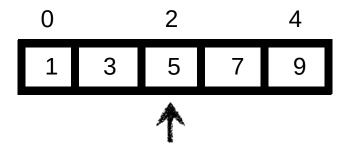
• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

N = 7?

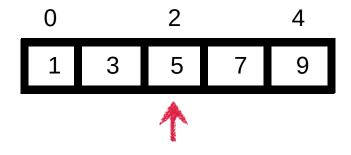


• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

Controllo l'indice nel punto medio $m = \frac{start + end}{2}$

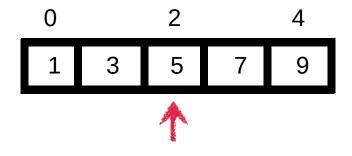

• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

Controllo l'indice nel punto medio
$$m = \frac{start + end}{2}$$


Complessità logaritmica, perché vado a dividere l'array in parti

• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

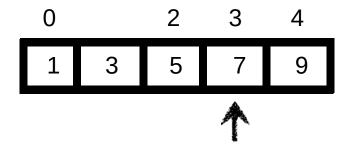
Controllo l'indice nel punto medio
$$m = \frac{start + end}{2}$$


• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

Controllo l'indice nel punto medio
$$m = \frac{start + end}{2}$$

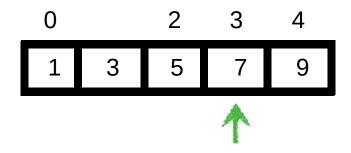
L'elemento in posizione m non è quello che cerchiamo L'elemento in posizione m è più piccolo di N e l'array è ordinato

• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!



Controllo l'indice nel punto medio
$$m = \frac{start + end}{2}$$

Cerchiamo nella metà di destra dove ci sono gli elementi più grandi di quello in posizione m (quindi forse c'è N)


Start = m+1, End = End (nel caso opposto Start = Start e End = m-1)

• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

Controllo l'indice nel punto medio
$$m = \frac{start + end}{2}$$

• Ricerca Binaria su Array Ordinato – Più efficiente, bisezione!

Controllo l'indice nel punto medio $m = \frac{start + end}{2}$

Possibilità: troviamo N oppure Start > End (non troviamo N)

Ricerca Binaria

Esercizi

[RICORSIONE]: Ricerca Binaria

Testo

Si scriva una funzione ricorsiva che cerca un numero N in un array ordinato tramite ricerca binaria

Bonus: si faccia lo stesso con le stringhe

Thank You!

Mail: <u>luca1.alessandrini@polimi.it</u>

Website: https://alessandriniluca.github.io/